Weighted Multivariate Mean Square Error for processes optimization: A case study on flux-cored arc welding for stainless steel claddings
نویسندگان
چکیده
A mathematical programming technique developed recently that optimizes multiple correlated characteristics is the Multivariate Mean Square Error (MMSE). The MMSE approach has obtained noteworthy results, by avoiding the production of inappropriate optimal points that can occur when a method fails to take into account a correlation structure. Where the MMSE approach is deficient, however, is in cases where the multiple correlated characteristics need to be optimized with varying degrees of importance. The MMSE approach, in treating all responses as having the same importance, is unable to attribute the desired weights. This paper thus introduces a strategy that weights the responses in the MMSE approach. The method, called the Weighted Multivariate Mean Square Error (WMMSE), utilizes a weighting procedure that integrates Principal Component Analysis (PCA) and Response Surface Methodology (RSM). In doing so, WMMSE obtains uncorrelated weighted objective functions from the original responses. After being mathematically programmed, these functions are optimized by employing optimization algorithms. We applied WMMSE to optimize a stainless steel cladding application executed via the flux-cored arc welding (FCAW) process. Four input parameters and eight response variables were considered. Stainless steel cladding, which carries potential benefits for a variety of industries, takes low cost materials and deposits over their surfaces materials having anti-corrosive properties. Optimal results were confirmed, which ensured the deposition of claddings with defect-free beads exhibiting the desired geometry and demonstrating good productivity indexes. 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Influence of Flux Cored Arc Welding Parameters on the Weld Bead Geometry in 316l Stainless Steel Claddings Deposited on Aisi 1020 Carbon Steel Plates
In recent years, stainless steel cladding applications have increased in industrial environments due to this process allows anti-corrosive surfaces be produced from low cost materials, such as carbon steel or low alloy steels. However, to ensure the final quality of the claddings, it is important to know the welding parameters’ effects on the process outputs. This contributes to an appropriate ...
متن کاملAn Evaluation of Welding Processes to Reduce Hexavalent Chromium Exposures and Reduce Costs by Using Better Welding Techniques
A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) pr...
متن کاملINVESTIGATING THE EFFECT OF WELDING PASTE CONTAINING GRAPHENE NANOSHEETS ON BONDING PROPERTIES OF WELDED AISI 304 STAINLESS STEEL PRODUCED BY FLUX-CORED ARC WELDING
In this research, the effect of graphene oxide (GO) and reduced graphene oxide (RGO) nanosheets on the mechanical and microstructural properties of AISI 304 stainless steel welded joints produced by the flux-cored arc welding (FCAW) method was investigated. Light microscope, field emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy (EDS), X-ray diff...
متن کاملEmission of dust and gases in tubular cored wire welding of steel.
The emission of dusts and gases, which are generated during tubular cored wire welding and which are hazardous to health and the environment, were studied. Tests included various kinds of tubular electrode wires used for welding steel, that is, rutile flux cored wires, basic flux cored wires, and metal cored wires for welding unalloyed, low-alloy, and high-alloy steels as well as self-shielded ...
متن کاملNumerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418
In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 226 شماره
صفحات -
تاریخ انتشار 2013